418 research outputs found

    A Review of VLBI Instrumentation

    Full text link
    The history of VLBI is summarized with emphasis on the technical aspects. A summary of VLBI systems which are in use is given, and an outlook to the future of VLBI instrumentation.Comment: 8 pages. No figures. Proceedings of the 7th European VLBI Network Symposium held in Toledo, Spain on October 12-15, 2004. Editors: R. Bachiller, F. Colomer, J.-F. Desmurs, P. de Vicente (Observatorio Astronomico Nacional), p. 237-244. Needs evn2004.cl

    Solving the polarization problem in ALMA-VLBI observations

    Full text link
    The Atacama Large mm-submm Array (ALMA) is, by far, the most sensitive mm/submm telescope in the World. The ALMA Phasing Project (APP) will allow us to phase-up all the ALMA antennas and use them as one single VLBI station. This will be a key component of the Event Horizon Telescope (EHT), a Global VLBI array at millimeter wavelengths. A problem in the APP is the calibration and conversion of the polarization channels. Most VLBI stations record their signals in a circular basis, but the ALMA receivers record in a linear basis. The strategy that will be followed in the phased-ALMA VLBI observations will be to correlate in "mixed" basis (i.e., linear versus circular) and convert the visibilities to a pure circular basis after the correlation. We have developed an algorithm to perform such a polarization conversion of the VLBI visibilities. In these proceedings, we present the basics of the PolConvert algorithm and discuss on the polarization conversion in the general case were single dishes (besides phased arrays) record with linear receivers in VLBI observations. We show some results of PolConvert applied to realistic simulations, as well as a test with real VLBI observations at 86\,GHz between the Onsala radiotelescope (recording in linear basis) and the Effelsberg radiotelescope (recording in circular basis).Comment: To appear in the Proceedings of the 12th European VLBI Network Symposium (7-10 Oct 2014, Cagliary, Italy

    Searching for low mass objects around nearby dMe radio stars

    Get PDF
    Nearby M-dwarfs are best suited for searches of low mass companions. VLBI phase-referencing observations with sensitive telescopes are able to detect radio star flux-densities of tenths of mJy as well as to position the star on the sky with submilliarcsecond precision. We have initiated a long-term observational program, using EVN telescopes in combination with NASA DSN dishes, to revisit the kinematics of nearby, single M dwarfs. The precision of the astrometry allows us to search for possible companions with masses down to 1 Jupiter mass. In this contribution we report preliminary results of the first observation epochs, in which we could detect some of the radio stars included in our program.Comment: Proceedings of the 6th European VLBI Network Symposium, Ros E., Porcas R.W., Lobanov A.P., & Zensus J.A. (eds.), MPIfR, Bonn, Germany, p. 255-258 (2002). 4 pages, 3 figures, needs evn2002.cl

    Spectral Properties of the Core and the VLBI-Jets of Cygnus A

    Full text link
    We present a detailed VLBI study of the spectral properties of the inner core region of the radio galaxy Cygnus A at 5 GHz, 15 GHz, 22 GHz, 43 GHz and 86 GHz. Our observations include an epoch using phase-referencing at 15 GHz and 22 GHz and the first successful VLBI observations of Cygnus A at 86 GHz. We find a pronounced two-sided jet structure, with a steep spectrum along the jet and an inverted spectrum towards the counter-jet. The inverted spectrum and the frequency-dependent jet-to-counter-jet ratio suggest that the inner counter-jet is covered by a circum-nuclear absorber as it is proposed by the unified scheme.Comment: 2 pages, 2 figures, Proceedings of the 7th EVN Symposium held in Toledo, Spain in October 2004, needs evn2004.cl

    Compact Structure in FIRST Survey Sources

    Full text link
    We present preliminary results from a statistical survey of compact structure in faint radio sources. Around 1000 sources from the VLA FIRST survey (flux densities larger than 1 mJy at 1.4 GHz) have been observed with the single-baseline interferometer Effelsberg-Arecibo. We observed each source, selected from a narrow strip of sky at declination 28 deg, for just one minute. The baseline sensitivity at 1.4 GHz, using 512 Mb/s recording, is such that any FIRST source, selected at random, would be detected if most of its flux density is in compact structure. We discuss the detection-rate statistics from one epoch of these observations.Comment: 4 pages. 12 figures. Proceedings of the 7th European VLBI Network Symposium held in Toledo, Spain on October 12-15, 2004. Editors: R. Bachiller, F. Colomer, J.-F. Desmurs, P. de Vicente (Observatorio Astronomico Nacional), p. 31-34. Needs evn2004.cl

    Proper motion in Cygnus A

    Full text link
    Our recent VLBI observations of the prominent FR II radio galaxy Cygnus A with the EVN and the VLBA reveal a pronounced two-sided jet structure. At 5 GHz, we now have 4 epochs from 1986, 1991 (Carilli et al., 1991 & 1994), 1996 and 2002 from which we could derive the kinematics of the jet and counter-jet. On the jet side and on mas scales, the jet seems to accelerate from βapp≈0.1−0.2\beta_{\rm app}\approx 0.1-0.2 (Krichbaum et al. 1998) at core-separations near 1 mas to βapp≈0.4−0.6\beta_{\rm app}\approx 0.4-0.6 at r≥4r \geq 4 mas (H0=100H_0=100 km s−1^{-1} Mpc−1^{-1}, q0=0.5q_0=0.5). For the first time we also measure significant structural variability on the counter-jet side. For this, we derive a motion of βapp=0.35±0.2\beta_{\rm app}=0.35\pm0.2 at r=9.5r=9.5 mas. The flat spectrum of the inner region of the counter-jet (free-free absorption) and the frequency dependence of the jet to counter-jet ratio support strong evidence for an obscuring torus in front of the counter-jet (Bach et al. in prep, Krichbaum et al. 1998).Comment: 4 pages, 6 figures, appears in: Proceedings of the 6th European VLBI Network Symposium held on June 25th-28th in Bonn, Germany. Edited by: E. Ros, R.W. Porcas, A.P. Lobanov, and J.A. Zensu

    DiFX2: A more flexible, efficient, robust and powerful software correlator

    Get PDF
    Software correlation, where a correlation algorithm written in a high-level language such as C++ is run on commodity computer hardware, has become increasingly attractive for small to medium sized and/or bandwidth constrained radio interferometers. In particular, many long baseline arrays (which typically have fewer than 20 elements and are restricted in observing bandwidth by costly recording hardware and media) have utilized software correlators for rapid, cost-effective correlator upgrades to allow compatibility with new, wider bandwidth recording systems and improve correlator flexibility. The DiFX correlator, made publicly available in 2007, has been a popular choice in such upgrades and is now used for production correlation by a number of observatories and research groups worldwide. Here we describe the evolution in the capabilities of the DiFX correlator over the past three years, including a number of new capabilities, substantial performance improvements, and a large amount of supporting infrastructure to ease use of the code. New capabilities include the ability to correlate a large number of phase centers in a single correlation pass, the extraction of phase calibration tones, correlation of disparate but overlapping sub-bands, the production of rapidly sampled filterbank and kurtosis data at minimal cost, and many more. The latest version of the code is at least 15% faster than the original, and in certain situations many times this value. Finally, we also present detailed test results validating the correctness of the new code.Comment: 28 pages, 9 figures, accepted for publication in PAS

    Magnetic Field Geometry of the Broad Line Radio Galaxy 3C111

    Full text link
    Very Long Baseline Polarimetric observations of the Broad Line Radio galaxy 3C111 performed in July and September of 1996 at 8 and 43 GHz reveal rapidly evolving parsec-scale radio structure after a large millimetre outburst. The B-field geometry is not simple. We present a first analysis of possible Faraday and optical depth effects based on a comparison of the polarization images for the two frequencies.Comment: 4 pages, 4 figures, Proceedings of conference "The Physics of Relativistic Jets in the Chandra and XMM Era", eds. G. Brunetti, D.E. Harris, R.M. Sambruna, and G. Setti, submitted to New Astronomy Revie
    • …
    corecore